德国Fevik(菲维科)非常注重冻干机的研发,不断推出新技术和新产品,同时坚持采用德国技术,并且以德国工艺精益求精的优势,打造性能稳定、经久耐用的冻干机产品。另外,凭借其专业的技术和高品质,目前已和多所大学实验室、研究院所进行深度合作。
冻干机在实际使用过程中,有时会发生真空泵进水现象,导致客户频繁更换真空泵油,费用支出颇大,同时真空泵性能和寿命受到影响,进而影响到客户的正常生产。
影响真空泵进水的原因涉及到2个大的方面:气流问题、制冷及真空问题,主要涉及气流走向,气流通道,系统制冷,相关的温度、压力、真空配置和控制工艺等,这几个方面并不独立影响真空泵进水,实际应是互为影响,解决真空泵进水,需要综合考虑这些因素,下面我们就气流问题进行仔细分析。冻干机冻干机冻干机
气流问题影响真空泵进水的现象主要表现为:冷凝器(捕水器)内盘管表面结霜不均匀,各组盘管之间,单组盘管的不同位置出现结霜厚度不同的情况,甚至盘管部分位置出现不结霜的情况,在制冷能力满足满载使用要求,盘管的温度可以到达,也就是盘管温度及真空情况足以满足捕捉满载水汽的前提下,气流的组织分布,气流走向没有经过部分盘管,造成无法捕捉水汽,继而进入真空泵。冻干机冻干机冻干机
冻干机造成气流未充分流经盘管的原因主要有:
1.水汽从冻干箱升华至冷凝器时,首先经过中隔阀和中间通道的间隙,(本文仅以中隔阀为蘑菇阀时的情况作为示例加以说明),所以中隔阀和盘管之间的距离设置,冷凝器内气流挡板和盘管及中隔阀的距离设置会直接影响到气流进入冷凝器时的组织分布,气流走向。同时,液压驱动的中隔阀的行程也是考虑因素之一。冻干机冻干机冻干机
2.盘管的布置,盘管多组分布的情况要根据气流经过中隔阀及气流挡板后的走向,结合真空管的位置来确定,换言之,冻干箱内作为水汽的产生源头,冷凝器内真空管位置作为真空压力推动的源头,根据这2个起止点来进行模拟分析,仿真分析出气流从头至尾的组织分布,在满足蒸发面积及制冷剂均匀分配,也就是匹配系统制冷量,匹配制冷分配,包括较大的捕冰量,不同制品的较大升华速度的前提下,进行合理的盘管计算和布置。其中盘管的空间布局,盘管的组数,单组、单根的长度(考虑氟利昂的蒸发路径),盘管的表面积等都要综合计算考虑,另外,可以通过增加额外的气流挡板来有效实现气流组织的均匀分布。图五为几种典型的盘管布局,不同的盘管布置,还决定了冷凝器的形状大小,同时也决定了整个冻干机的布局及尺寸,盘管的布置在考虑真空泵进水时时比较关键,同时也是牵涉面比较广的一点,所以在方案阶段设计阶段务必需要进行综合的考虑。冻干机冻干机冻干机
注意:在考虑上述静态内容的同时,要考虑在水汽捕捉的过程中,盘管表面冰层的形成必然是有先后顺序的,随着冰层的加厚,各位置气流通道也会产生动态的变化,所以各位置的间隙要进行更加细致的考虑,尤其是盘管在靠近气流通道的前端部分,多组盘管之间的间隙,盘管和中隔阀板的间隙,盘管和气流挡板之间的间隙应放大或者和盘管末端有所不同。避免发生前端结霜过快过厚,导致堵塞部分气流通道的现象发生。冻干机冻干机冻干机
3.真空管的结构及位置
真空管直接连接至真空系统,作为整个冻干箱及冷凝器的真空来源,也就是压力推动来源。其口径的大小,真空吸入口在冷凝器内部的具体位置(和盘管的相对位置),甚至真空吸入口的数目都是显而易见的重要因素之一,会直接影响到气流组织的均匀分布和走向,造成气流捕捉的不均匀,继而造成气流直接未被盘管捕集而直接进入真空泵,以致真空泵油进水。冻干机冻干机冻干机
真空管的结构和布置同时会取决于冷凝器的形状,盘管的布局以及中隔阀的位置及布置。所以要根据不同的情况进行具体的分析,便于决定合理的结构设计和布局,通用的原则为:真空管的吸入口要尽量布置到气流的末端,或者说,气流走向的末端上(以卧式圆筒体或方形冷凝器为例,可简单理解为在盘管后端),必须设置真空吸入口。冻干机冻干机冻干机
以上就是影响冻干机真空泵的进水问题,大家都了解了吗?更多详情可与我们联系咨询哦。
免责声明:所载内容来源互联网等公开渠道,我们对文中观点保持中立,仅供参考,交流之目的。转载的稿件版权归原作者和机构所有,如有侵权,请告知我们删除。